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MOTION OF A CHAIN OF BUBBLES IN A VERTICAL CHANNEL WITH 

A VISCOUS FLUID 

P. K. Volkov UDC 532.529.6 

Regular chains of nearly identically shaped bubbles moving one after the other are 
seen in bubble towers and in the uniform passage of gas bubbles through a tube. The upward 
velocity of the bubbles in these cases will obviously differ from the velocity of a single 
bubble of the same size, while the pattern of flow will depend to a significant extent on 
the distance between the bubbles. There are still serious obstacles to conducting theoreti- 
cal and experimental studies of such bubble motion. The study [i] - where Nakorjakov et al. 
obtained the longitudinal components of the velocity vector across a tube behind a bubble 
and measured the friction on the tube wall - might be the only investigation to give some 
quantitative picture of the hydrodynamics of the process. 

In the present study, we propose an algorithm for numerically solving the problem of 
the steady motion of a chain of bubbles in a viscous fluid within a vertical tube under the 
influence of buoyancy. Results are obtained for the case when the tube wall has almost no 
effect on the rise of the bubbles and the case when this effect is decisive. 

i. Formulation of the Problem. In the coordinate system connected with the center of 
mass of the chain of bubbles, the tube moves downward at a constant velocity u equal to the 
upward velocity of each bubble and the fluid flows past the chain. In this case, the motion 
of the entire chain can be described by examining the flow past a single bubble. Since the 
problem is periodic, the flow pattern will be the same over the distances L up and down from 
the center of mass of the bubble; the period will be equal to 2L. 

We introduce a spherical coordinate system (r, 8, ~) whose origin O coincides: with the 
center of mass of the bubble (Fig. i). Let r = R(@) (8 ~ [0, ~]) be the equation of the 
surface of the bubble and R k be the radius of the tube. With allowance for the axial sym- 
metry of the problem, the Navier-Stokes equations of a viscous incompressible fluid in the 
variables ~ (curl) and ~ (stream function) have the same form as in [2, 3]. 

The boundary conditions differ from those described in [3] only in the sections F l 
(r = L/cos@, @ e [0, 8"]) and F2 (r = -L/cosS, @ e [~ - 8", v], tan@* = Rk/L), w]here we 
assign periodicity conditions reflecting the fact that the values of the velocity functions 
and their derivatives over normals to the boundaries F I and F 2 coincide. It follows from 
[4] that, in terms of the curl m and stream function ~, they have the following form (where 
the z axis is directed along the tube) 

(1.l) 
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Fig. i 

With conditions (i.i), the problem obviously differs from that which was solved in [3] - 
where the velocity vector was given at the inlet and outlet. Conditions (I.i) mean that the 
profile of the velocity vector at the boundaries FI, F= must be found simultaneously with 
the flow functions. 

2. Algorithm for Solving the Problem. Since the only factor complicating the problem 
is the boundary conditions, we will solve it by the method described in [3]. Making the sub- 
stitution of variables N = (r - G(8))/(R(8) - G(%)), 8' = 6 changes the flow region to a rec- 
tangle [0, I] x [0, ~]. Here, the function r = G(e) (8 e [0, ~]) gives the equation of the 
boundary, which consists of three parts: Fl, F 2, F 3. At n = 0, Eqs. (i.I) take the form 

]r~ = * lr2, (AtP n + B ,o ) i r~  = (Aapn q- B~2o)[r 2, 

(o [r~ = co ]r~, (A(on Jr Br = (A(o n + B(oo)[rz, 
(2.1) 

where A = (cos0 + (G'/G) sinS)/(R - G); B = -sin e/G. 

We used the difference scheme and the algorithm described in [5] to numerically solve 
the problem. However, two factors kept us from making direct use of the scheme in [5]. 

First of all, on F 3 there are two conditions for the function ~ and no conditions for 
~. This situation is typical of problems solved in the variables of stream function ~ and 
curl m and containing conditions of adhesion to solid walls. Proceeding similarly to [6], 
we obtain a condition for ~ on F 3 with the use of the equations of motion: 

G~+~ ': [ ~  ( ,  _ , . .  + hl~,0 + 2c' ( n -  G) 
2(B_G)2Ga sinO G2 @G ,,, *qO -Jc 

(R--G)(G"--c'~ (R'--G') 

+ C 2 + a ' :  ~n �9 

( 2 . 2 )  

Here, h I is the mesh of the difference grid with respect to q; ~i is the value of ~ on the 
wall F3; ~2 is the value of ~ at the distance hl from the wall; ~q, ~D8 are calculated in 
accordance with Eq. (1.6) from [3]. Toobtain a stable computation with condition (2.2), it 
is necessary to perform the following relaxation procedure [7]: mk+1 = ~m + (i - ~)mk 
[where k is the number of the iteration; ~ is chosen experimentally (~hl)]. 

Secondly, conditions (2.1) connect the functions and their derivatives on different sec- 
tions of the boundary q = 0. We obtain formulas to calculate ~ and ~ on F I and F2, having 
exactly satisfied (2.1) in the process. As in [5], we will use the method of a stabilizing 
correction to solve the problem of determining ~ and e. Obvious difficulties arise in the 
calculation of the problem with conditions (2.1). As in the method of left trial run [8], 
let 

(2.3) 

(~i+lJ = @((i + l)h I, jh2), h 2 is the mesh with respect to 8; ~i+lJ, ~i+lJ are correction 
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factors). Then with i = 1 we have the following difference approximation of (2.]): 

- B ' " " . . . . .  

v l  , .4;  I 2 - - L - -  + . ~ ,~ - ;+1  ~ . , . ~ , - ~ 1  ,,,.re-.i+1 
�9 = : ,  ~i + B,,,-.,~-I ~1 

1,'l. h 2 I~ 1 h2. 

Adding the relations from (2.3) with i = 1 

�9 i ; ? ~ m - - ] + l  m - -  +Z1 , m - - ; + l  o m - - j + l  

we obtain four equations to determine ~i j, ~im-J +i, ~2J, ~2m-J +i. Excluding ~2 j, ~2m-J +z, 
we find 

( ~ - - ~  - )c, ,  / h , - .  (,-1 ~., -.,~lr~.,_), , 
(2.4) 

(m is the number of points along 6, j e [i, j*], j* is the number of points on Fz, F2). It 
can be shown that the denominator in (2.4) does not vanish. We proceed in a similar manner 
to obtain the expression for ~lJ. All of the correction factors ~i+lJ, ~i+lJ (i = m - 2, 
.... i) are calculated beforehand for each value of j on the basis of formulas obtained by 
the left trial run method [8]. Thus, conditions (2.1) are realized exactly in each iteration. 

3. Results of Calculations. The solution of the original problem obviously depends on 
four independent dimensionless parameters. As these parameters, we can take Re, We, I = a/ 
R k, and L. Calculations were performed for I = 0.2 and L = 20. A comparison with the data 
in [5] can be made for certain values of Re and We, when the wake of the bubbles is small. 

The results of the calculations are shown in Fig. 2 by isolines of the Froude number 
Fr = u2/ga in the coordinates R o = a/(o/pg) I/~, R v = a/(v2/g) I/3. Considering that (Ro/ 

Rv) 6 = gp3v4/os = M (where M is the Morton number), we can easily find the upward velocity 
u for a bubble of the given size a in the specified fluid. Since we chose log R o and logR v 
as the coordinates in Fig. 2, each fluid is represented by a certain straight line inclined 
45 ~ to the axis R o. It should be noted that upward velocity of the bubble increases with 
an increase in its size for fluids with a large value of M (which are generally fairly vis- 
cous fluids). In fluids with small M - shown by the straight line above line 1 - the depen- 
dence of the upward velocity of the bubble on its size is nonmonotonic in character. There 
is a local velocity maximum at a certain value of a. This corresponds to the case when iso- 
line Fr = const is tangent to the straight line representing the fluid in Fig. 2. The value 
of Fr (upward velocity) decreases with a further increase in R o (the dimension a). The cal- 
culations showed that the point of the local velocity maximum corresponds to the moment of 
formation of a trailing vortex behind the bubble. A closed wake exists behind the bubble 
above the upper straight line 2 in Fig. 2. The left corner demarcated by line 3 is the re- 
gion of spherical bubbles. Line 1 indicates that the leading portion of the bubble begins 
to advance, while line 4 indicates that the trailing portion begins to move backward. Thus, 
at Re < 0.4, the bubble begins to be distorted by the presence of the walls and stretches 
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out along the tube axis. In the region of spherical bubbles, the isolines Fr = const are 
nearly straight and correspond to a constant value of Re. 

At Re < 20, the values of Fr and the flow pattern agree well with the calculations in 
[5]. Calculations performed with Re ~ 20 yield values of Fr that differ 10-15% from the 
values in [5]. The lines indicating the presence of a trailing vortex and a region of sphe- 
rical bubbles are located somewhat below the position dictated by the calculations in [5]. 
This can be attributed to the fact that we had twice as many points along 6 as [5]. There 
are also significant differences in the form of the trailing vortex, the latter being con- 
siderably longer in our case. Figure 3 shows the flow pattern for Re = 40, We = 8.4, M = 
0.00043, R o = 2.04, Rv = 7.43. On the whole, the parameters and structure of the flow are 
similar to [9]. 

The good agreement between the calculations in [5] and experiments in [9] with regard 
to the drag coefficient (or, equivalently, with respect to Fr) is due to the fact that the 
main contributions to the integral characteristics are made by the separation zone (which 
was present in [5]) and the flow near the bubble. The drag coefficients begin to approach 
one another when the form of the free surface and the separation point are similar. The 
length of the wake is determined by the presence of a secondary flow. The presence of this 
flow is indicated in Fig. 3 by the local stream-function maximum of 0.16. 

The above-constructed algorithm makes it possible to almost exactly determine the struc- 
ture of the wake of the bubble. In truth, it is impossible to exactly satisfy the boundary 
conditions on the external boundary of the flow when solving the problem of the motion of a 
single bubble in an infinite region. It is usually necessary to take them at a certain fi- 
nite distance. In addition, it is not entirely certain what conditions should be assigned 
behind the bubble. In the given formulation, everything depends on the distance between 
bubbles 2L. Given sufficiently large L, one bubble will have little effect on another. This 
effect can be evaluated experimentally. 

Figure 4 shows the flow pattern for Re = 60, We = 9.6, M = 0.0001, R o = 1.9, Rv = 8.8, 
Fr = 1.14. A separation zone and a developed secondary flow are present in the wake behind 
the bubble. The region of the intensive secondary flow, occupying nearly the entire space 
between bubbles, approaches the leading bubble with an increase in We. 

Calculations performed with L = i0 showed that even at Re > 20 the wake from the lead- 
ing bubble closes on the trailing bubble. Thus, instead of a chain of individual (surrounded 
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by fluid) bubbles rising toward the surface, we now have a more integrated structure consist- 
ing of bubbles and intervening fluid. The upward velocity of this chain is greater than the 
upward velocity of the individual bubbles and is determined by the buoyancy of the bubbles 
comprising the chain. The fluid entrained by the bubbles is displaced upward as such chains 
move toward the surface. 

Calculations performed for another limiting case (surfacing of chains of bubbles in 
channels whose radius is comparable to a (4 = 0.8) showed that their upward velocity and the 
flow pattern are the same as in the surfacing of a single bubble if the distance between bub- 
bles is greater than the diameter of the channel. This conclusion is fully in accord with 
the calculations in [3], where it was found that the velocity profile for the cross section 
of the tube smooths out at a distance of just 1.5 tube diameters from the bubble. 

8. 

9. 
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STABILITY OF AN ADIABATIC CONTINUOUS CHEMICAL REACTOR 

T. A. Bodnar ~ UDC 532.72 

Numerical studies (see [1-3], for example) have shown that there can be many steady- 
state regimes of operation of chemical reactors with distributed parameters. At the same 
time, as was demonstrated by N. N. Moiseev et al. in a postscript to [4], numerical methods 
cease to work for such systems in the neighborhood of bifurcation poinLs - where the solution 
loses its uniqueness. Formidable obstacles are encountered in attempts to develop numerical 
methods of post-bifurcation analysis that make it possible to find all of the solutions ema- 
nating from bifurcation points. These obstacles are particularly great in the case of multi- 
dimensional problems or problems with many factors, such as in numerical studies of chemical 
reactors with distributed parameters. 

In the present investigation, we use the theory in [4] to develop a method of analyzing 
the stability of steady-state solutions of a system of partial differential equations which 
describes the operation of a continuous chemical reactor with an adiabatic temperature change. 
The method is based on reduction of the number of dimensions of an infinite-dimensional prob- 
lem through the use of projections of its solutions on an eigenfunction space and the Fredholm 
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